Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures

Computer Architecture Group
Department of Electronics and Computer Science
Faculty of Physics
University of Santiago de Compostela (Spain)
The Computer Architecture Group.

Motivation of the Nanoelectronics Research.

Parallel 2D Monte Carlo Simulation of Nanoelectronic Devices.

Assessing the Grid for Nanoelectronics.

Conclusions.

Future work: An e-Science Infrastructure for Nanoelectronics.
Introduction of the Computer Architecture Group

Where are we?
Introduction of the Computer Architecture Group

Where are we?

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures

R. Valín. E-mail: raul.valin@usc.es
Introduction of the Computer Architecture Group

Research lines

- Signal Processing for Image, Video Coding, and Communications.
- Compilation Techniques for Parallel Computers.
- Computer Arithmetic.
- Memory Hierarchy Optimization in Irregular Problems.
- Run-time Support for Parallelisation and Memory Improvement of Irregular Codes.
- Parallel Simulation of Semiconductor Devices.
- Grid and Cloud Computing.
Simulation Techniques

- Drift-Diffusion.
- Monte Carlo.
- NEGF.

Simulated Devices

- SOI MOSFETs.
- FinFETs.
- Heterostructures.
- Solar Cells.
- Spin-Diode.
Introduction of the Computer Architecture Group
Grid and Cloud Computing

- FORMIGA PROJECT: Integration of computer labs of the university in the es-NGI.
- FORMIGA CLOUD: Development of a Cloud infrastructure using the computer labs of the university.

Objectives:
- Increasing the number of available resources for our simulations.
- Learning about new technologies and analysing possible applications.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Motivation of the Nanoelectronics Research

MOSFET Transistor

- MOSFET is one of the basic components of the Integrated Circuits now and during the last 50 years.
- Moore’s Law: 2x transistors every two years.
- In this period we had an amazing evolution of the electronics.
- Faster processors, mobiles, new electronic devices.
Motivation of the Nanoelectronics Research

MOSFET Transistor

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures

R. Valín. E-mail: raul.valin@usc.es
Motivation of the Nanoelectronics Research
End of Traditional Scaling Era

Challenges

▶ High Speed.
▶ Integration.
▶ Power Save.

The International Technology Roadmap for Semiconductors (ITRS): Guideline that establishes the challenges on the design of new devices. The 22 nm technological node is the end of the Bulk Technology (ITRS 2010).
Motivation of the Nanoelectronics Research
End of Traditional Scaling Era

How can Moore’s Law continue?

- Strained Silicon.
- Hi-K.
- Multigate Devices.
- SOI Devices.
For technical and economical reasons Technology Computer Aided Design (TCAD) tools complete experimental development techniques.
Monte Carlo Method

- Numerical method that solves the BTE. Semi-classical transport theory.

\[
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_r f + \dot{\mathbf{k}} \cdot \nabla_k f = \left. \frac{\partial f}{\partial t} \right|_{\text{coll}}
\]

- The solution of BTE is obtained from the simulation of the charge carrier transport in the nanoelectronic device.

- Stochastic selection of the flight times and scattering mechanisms.

- SPMC and EMC.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Why do we need parallelism?

- MC simulators are high demanding computational applications.
- Studying the physical behaviour of a device for 1 ps requires around 1 or 2 hours of computational time.
- Typical simulations are 30 ps length.
- Variability studies requires hundreds or thousands of simulations.

Why OpenMP?

- 92% of the systems of the TOP500 list have multicore processors (November 2010). 73% 4 cores and 19% 6 cores or more.
- De facto standard for shared-memory programming.
- Quite easy programming language.
The 2D Multisubband MC Simulator enables us to simulate the quantum confinement effect on the perpendicular direction to the transport plane.

- BTE is solved in the transport direction.
- Schrödinger equation is solved in the confinement direction.
2D Monte Carlo Simulation of Nanoelectronic Devices
Parallelisation of a 2D Multisubband MC Simulator

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
2D Monte Carlo Simulation of Nanoelectronic Devices
Parallelisation of a 2D Multisubband MC Simulator

- Execution time has been reduced by a factor 7 with 8 cores.
- We can obtain simulation results faster.
- This allows us to reduce the development time of new models.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Studies of parameter variations require a lot of simulations.
2D Monte Carlo Simulation of Nanoelectronic Devices

Parallelisation of a 2D Multisubband MC Simulator

Studies of parameter variations require a lot of simulations.

More resources are necessary. Could be the Grid useful?
Assessing the Grid

Introduction

- The creation of the EGI based on NGIs is giving a boost to the NGI development.
- The grid infrastructure of each country will be run by National Grid Initiatives.
- The Spanish NGI (es-NGI) is supported by the Spanish Network for e-Science.
Assessing the Grid
Accessing to the resources

▶ eng.vo.ibergrid.eu VO belongs to IBERGRID infrastructure.
▶ It was created in 2010 to support the jobs of the following areas: architecture and, electrical, electronics and automatic engineering.

Initial tasks:
▶ Assessing the advantages of this infrastructure for nanoelectronics.
▶ Simplifying the submission and motorization of the jobs.
Assessing the Grid

Services

- **Information Service**: provides the state of the resources to the resource broker.
- **Resource Broker**: submits jobs to the resource centres.
- **VOMS**: stores the information about VOs belonging to es-NGI.
- **Storage**: Distributed between the resource centres and available for all VO.
- **File Catalogue**: Localises the stored files.

Moreover, this infrastructure relies on monitoring and accounting services.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Assessing the Grid
Scheme of the VO infrastructure

Information obtained from *lcg-infosites* command (2010).

<table>
<thead>
<tr>
<th># Cores</th>
<th>Res. Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1378</td>
<td>PIC</td>
</tr>
<tr>
<td>1616</td>
<td>IFCA</td>
</tr>
<tr>
<td>848</td>
<td>IFIC</td>
</tr>
<tr>
<td>284</td>
<td>CIEMAT</td>
</tr>
<tr>
<td>340</td>
<td>CESGA</td>
</tr>
<tr>
<td>148</td>
<td>UNICAN</td>
</tr>
<tr>
<td>22</td>
<td>UNIZAR</td>
</tr>
<tr>
<td>Total #Cores</td>
<td>4636</td>
</tr>
</tbody>
</table>

Based on GLite middleware.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Assessing the Grid

SMNanoS Description

Command line user interface may be a problem for MOSFET VO users. A Python application has been developed to submit and monitor jobs.

Functionality levels.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures

R. Valín. E-mail: raul.valin@usc.es
Assessing the Grid
Test Simulation

- We have simulated a job collection with 5 jobs for testing the resource centres.
- Each job simulates a 2 ps length stationary state of a 2D DGSOI MOSFET.
- The execution script of each job saves the execution time, cpuinfo and kernel characteristics of the WN in the SE.
- These simulations were submitted to different resource centres that support our VO.
- Simulation results enable us to evaluate the influence of the resource centres heterogeneity on the execution time.
Assessing the Grid
Simulation Results

Execution time of each job of each resource centre.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Assessing the Grid

Simulation Results

Execution time of a job collection = the slowest time of the jobs belonging to the collection. Execution time deviation of the job collections could be over 50%.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Assessing the Grid
Simulation Results

<table>
<thead>
<tr>
<th>#</th>
<th>Res. Centre</th>
<th>CPU</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC</td>
<td>Xeon L5420 2.50 GHz</td>
<td>x86_64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xeon L5530 2.40 GHz</td>
<td>x86_64</td>
<td></td>
</tr>
<tr>
<td>IFCA</td>
<td>Xeon E5345 2.33 GHz</td>
<td>x86_64</td>
<td></td>
</tr>
<tr>
<td>IFIC</td>
<td>Xeon E5420 2.50 GHz</td>
<td>x86_64</td>
<td></td>
</tr>
<tr>
<td>CIEMAT</td>
<td>Opteron270 2.0 GHz</td>
<td>i686</td>
<td></td>
</tr>
<tr>
<td>UNICAN</td>
<td>PentiumD 3.0 GHz</td>
<td>x86_64</td>
<td></td>
</tr>
<tr>
<td>CESGA</td>
<td>Pentium4 3.20 GHz</td>
<td>i686</td>
<td></td>
</tr>
</tbody>
</table>

Processor models of the WNs for each resource centre.
Conclusions

- Scaling of nanoelectronic devices requires new materials and technologies.
- It is necessary to simulate new devices considering advanced physical models.
- Usually, scaled devices require more complex models and therefore, more computational time.
- Parallel simulators enable us to develop new models and get simulation results faster.
- The strong development of multicore processors has encouraged us to adopt OpenMP as the used parallel programming language.
- For example, the parallelisation with OpenMP of a 2D MSB-MC allows us to reduce by 7 the total execution time using 8 cores.
Conclusions

▶ Thanks to the parallel simulators we can get the results of parameter variations faster. However, more available resources are required.

▶ Grid infrastructures could be a good option to increase the number of available resources. But several drawbacks have to be overcome:

 • Heterogeneous resources produce until a 50% difference on the execution time of the simulations.

 • Easier technologies for the final users are required. Authentication, submission and monitoring services use archaic command line systems.
Future work: An e-Science Infrastructure for Nanoelectronics

Tidying up the nanoelectronic simulations

Nanoelectronics requires:

- Access to different infrastructures.
- Run different simulators made with different programming languages.
- Data management systems.
- Visualisation tools.

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures

R. Valín. E-mail: raul.valin@usc.es
Future work: An e-Science Infrastructure for Nanoelectronics

Proposed Infrastructure

Web Portal for Submitting and Monitoring Simulations
RAPID / SAGA

Computational Resources

Outputdata
PostgreSQL / Python

Outputdata
PostgreSQL Python

Storage

Storage System
PostgreSQL

Query

Query Results

Useful for other research fields. Bioinformatics, Chemistry, etc.
Future work: An e-Science Infrastructure for Nanoelectronics

Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures
R. Valín. E-mail: raul.valin@usc.es
Quantum 2D Monte Carlo Simulation of MOSFET Transistors using Advanced Architectures

Thank you for your attention!