Dependable Grid Services

Stuart Anderson™ Yin Chenf Glen Dobson** Stephen Hall**
Conrad Hughes™ Yong Lif Sheng Quf Ed Smith’ Ian Sommervillet*
Ma Tiejun’

August 18, 2003

Abstract

The provision of dependable computer systems by deploying diverse, redundant components
in order to mask or provide recovery from component failures has mostly been restricted to
systems with very high criticality. In this paper we present an architecture and prototype imple-
mentation of an approach to providing such redundancy at low cost in service-based infrastruc-
tures. In particular we consider services that are supplied by composing a number of component
services and consider how service discovery, automatic monitoring and failure detection have the
potential to create composed services that are more dependable than might be possible using a
straightforward approach. The work is still in its early stages and so far no evaluation of the

approach has been carried out.

1 Introduction

Dependability is a complex attribute which
recognises that simpler attributes such as avail-
ability and reliability cannot be considered in
isolation. Laprie [1] defines dependability to be
that property of a computer system such that
reliance can justifiably be placed on the service
it delivers.

A common feature of dependable systems is
that they use diverse, redundant resources to
reduce the probability of common mode fail-
ures and to allow the system to continue in
operation in the presence of component fail-
ure. Critical components of dependable sys-
tems may therefore be implemented as a com-
position of components, some of which are in-
tended to deliver the same services but are im-
plemented in diverse ways in an attempt to en-
sure their failures are not highly correlated.

Formal analysis of fault-tolerant software
systems has demonstrated that diversity can
contribute significantly to an improvement in
the reliability and availability of the overall sys-
tem [2]. However, a major inhibiting factor in
deploying diversity in systems is cost. Systems
deploying significant diversity, for example the

TSchool of Informatics, University of Edinburgh

tDepartment of Computing Science, Lancaster Uni-
versity

*These authors acknowledge the support of EPSRC
award no. GR/S04642/01, Dependable, Service-centric
Grid Computing

avionics system of the A320 commercial trans-
port aircraft, which uses diverse multi-channel
hardware and software, are very expensive to
develop. The use of diverse, redundant com-
ponents has therefore been limited to systems
where the consequences of system failure are
severe, and consequently they have high avail-
ability requirements.

With the advent of the Web Services [3]
definition there has been growing interest in
service-based architectures where functionality
is packaged as a standardised service with im-
plementation details hidden from the users of
these services. One particular example of this
is the work on Grid Services as a means to de-
liver computational and data resources to the e-
Science community. However, services provided
remotely over computer networks are subject
to frequent failure (tardy response, no answer,
etc.) for diverse reasons, ranging from resource
starvation and network instability through to
implementation or specification error. This
means that service users must currently incor-
porate code in their applications to detect and
cope with service failures.

The automatic composition of services (now
possible with various Web Service and Grid
standards) may reasonably be expected to have
a multiplicative effect on these failures since
breakdown of a single operation in a composi-
tion could jeopardise the entire procedure. Fur-
thermore, different error recovery strategies in-

corporated in services may interact in unex-
pected ways with each other and with explicit
error recovery mechanisms in the application.
We therefore believe that there is a need for
a standardised mechanism that allows applica-
tions to continue in operation (perhaps in a de-
graded way) in the presence of individual ser-
vice failure.

In this paper we outline our approach to im-
proving the dependability of Grid Services that
are provided by composing other Grid Services.
At first sight deploying diversity to improve the
dependability of Grid Services may appear to
be an excessively costly approach for all but
the most critical services but two features of
Grid Services make this approach much more
attractive:

1. For some (commonly used) services it is
envisaged that the pool of different imple-
mentations could be quite large. Although
we cannot be sure that these implementa-
tions are diverse, it is reasonable to conjec-
ture that it is likely that there will be sig-
nificant differences between them and con-
sequently they will exhibit diverse failure
behaviour.

2. The Grid architecture provides a service
discovery mechanism that facilitates iden-
tification of a range of different providers
for a given service.

These features mean that we may be able to
draw on large collections of different service
implementations without incurring huge cost.
This preliminary paper outlines our approach
to exploiting this diversity and provides a de-
scription of an early implementation.

Our goal is to use our early implementation
to investigate the feasibility of dependable Grid
Service provision and to explore a range of ap-
proaches to some of the issues we identify in
this paper. The main issues we address in this
work are:

1. We envisage that each service will have de-
pendability data associated with it. We
are considering how best to represent this
information. Many monitoring systems
collect individual measures of reliability or
availability — but we know these are not
independent and, from the point of view
of a service user, the tradeoffs between dif-
ferent parameters are important.

2. Composed services will rely on service dis-
covery to find available candidate services

to compose, along with their associated de-
pendability data. This assumes a mech-
anism to gather dependability data on a
particular service. We are considering the
design of monitoring systems including the
extent to which we can trust monitoring
data and how dependability data is up-
dated to reflect past experience.

3. It should be possible to calculate the de-
pendability of a composed service range
on the basis of dependability data for the
component services in the composition.
This will require us to develop appropri-
ate means to estimate the dependability of
the composed service on the basis of the
dependability data for the component ser-
vices.

4. The composed service will respond to fail-
ure data for the component services as it
delivers the composed service. This will in-
volve investigating real-time failure moni-
toring of the component Grid Services.

5. Users of services need a way to select ser-
vices by specifying the dependability char-
acteristics they require. There are a range
of existing QoS specification languages but
we believe they have some weaknesses. In
particular, they are poor at expressing
tradeoffs between different parameters.

The remainder of the paper considers our
proposed architecture, its operation, a brief de-
scription of our prototype implementation and
an outline of future directions.

2 Architecture

Client
Composite service
description, dependability
requirements

Normal call
to composite
service

Service Service
classification —> Engine <— dependability

database / database

Failure
detection

Services Performance
v <= .
monitors

Figure 1: Architecture

Our proposed architecture is outlined in fig-
ure 1; its components break down as follows
(more detailed information may be found in
later sections):

2.1 Engine

The engine performs two tasks — planning and
execution.

During the planning stage, a client requests
execution of a service (expressed as a composi-
tion) to a specified level of dependability within
constraints (usually cost or time). The en-
gine identifies which specific services might be
used to instantiate this composition by query-
ing the service classification database, and for
each identified service it retrieves relevant de-
pendability metrics from the service depend-
ability database. The net properties of possible
composition instantiations are then evaluated,
and if none satisfy requirements, modifications
to the basic composition are considered (see
section 3). When a satisfactory combination
of service choice and composition modification
has been found, the planning stage is complete.
It is conceivable that some negotiation between
client and engine may take place here — for
example a choice of several candidate compo-
sitions with different, but satisfactory, depend-
ability and constraint tradeoffs may be offered
to the client.

The execution phase comprises the exhibition
of the requested Grid Service interface (repre-
senting the composed service) to the client, and
execution of the chosen augmented composition
on receipt of service calls against the interface.
This process may involve setting up sensors to
identify failures of the component services, con-
ditional (in event of failure) and/or parallel ex-
ecution of services, lifetime management of el-
ements of the composition, etc.

2.2 Information Services

Before it is possible to create an instanti-
ated composition of services we require mecha-
nisms to discover and filter candidate services.
Within the overall architecture of the system
these mechanisms are called the service classi-
fication and dependability databases. The ser-
vice classification database provides a means of
discovering services that are syntactically and
semantically compatible with the current task.
Although our architecture does not prescribe
how service discovery takes place, it does re-
quire a service classification scheme.

In the context of a dependable architecture it
is not acceptable to have services that provide
no information with regards to their depend-
ability or quality of service. Therefore the ser-
vice dependability database must provide qual-
ity of service metrics for all services within the

system. Our ultimate intention is to populate
the service dependability database with met-
rics from monitors within the system, allow-
ing changes within the Grid to be reflected in
the makeup of the composition. The parame-
ters associated with quality must be modelled
within the database and evaluated by the en-
gine.

2.3 Sensors

This architecture requires two varieties of sen-
sor: failure detectors and performance moni-
tors.

Failure detectors are intended to provide im-
mediate feedback to the engine (in order that
it might take corrective or compensatory ac-
tion) in the event of failure of an operating ser-
vice: in some cases, services may be trusted to
quickly and accurately report their own prob-
lems (running out of disc space, for example),
while in others (network outage, host subver-
sion), an external observer is needed. Rapid
response usually comes at a cost: heartbeats,
keepalives, pings, all consume super-linearly in-
creasing amounts of network bandwidth as the
mesh of sensors grows and required response
time decreases. Schemes which can manage this
cost/benefit balance are needed.

Performance monitors are concerned with
the long-term measurement of service depend-
ability. They may do so in order to place
records in the dependability database, or in or-
der to verify compliance with a service level
agreement [4]. They may form part of a service,
or be operated by independent third parties.
Performance monitors have less of a real-time
requirement than failure detectors, but may log
and transmit large quantities of statistical in-
formation.

3 Example

The client has a composed service description
which describes how to amalgamate a hotel
booking service and a flight booking service into
a single travel booking service (this is a com-
mon example in composition language papers).
The client also has a cost limit and a desire that
the composed service succeed more often than
their past interaction with airline websites has.

The travel booking service description might
be a commonly available composition docu-
ment taken from the web, one which will work
with any booking services which conform to

some commercial standard. The QoS require-
ment is vague, however; we need to address the
issue of how human users may clearly express
themselves to a system which deals in numbers
and probability distributions. This work will
come later in the project — for the time being,
we interpret the user as desiring a 99% success
rate.

Lack of space constrains us to limit a de-
tailed description of the service but one of the
authors! has carried out a detailed study of
the provision of this kind of service. In or-
der to compress the presentation we provide
schematic illustrations of the kind of building
blocks we use to build dependable composed
services.

Given the trivial service “composition” of a
single service of type A as follows. . .

succeed

=
A Done

fail
..where “Done” indicates communication of
results — be they success, failure, or something
more nuanced — to the client, the following
might be a simple augmented instantiation:

succee
Plan — A1 —— Done

f%Zl Su Cec/d)

Ay if‘”l
Here, during the planning phase two specific
services of type A (A; and As) are chosen with
A; as primary and As as backup. If A; fails, A
is called; if Ao also fails, then failure is admit-
ted. Obviously this process could be continued
forever, but the planning phase would establish
in advance how many fallbacks were necessary
to satisfy the client’s requirements within cost
and time constraints.

Another option follows:

succ ed
azl
succee succeed
—

Plan —— A2 —_Join

—
fllll fail
Az fal
Here Ay, Ay, and Az are all run in parallel;
“Join” could be chosen to mean waiting for the
first successful reply and then finishing (favour-
ing availability and (to some extent) speed), or
it could mean a vote, wherein at least two iden-

tical results were required before a successful
outcome was recorded — favouring reliability

Done

1Sheng Qu, as part of his Masters dissertation in
Edinburgh.

instead. Different clients would get different
solutions according to their requirements, and
the engine will plan these solutions using es-
timation based on dependability data for the
available services.

4 Implementation

Currently we have prototype implementations
of many of the components of the proposed sys-
tem. These include:

1. Real-time sensors utilising notification in
the GT3 toolkit to transfer information to
direct recovery from service failures.

2. Performance monitors based on the JXTA
peer-to-peer infrastructure that gather
long-term data on the dependability of in-
dividual service instances.

3. Testing frameworks that integrate with the
GT3 toolkit to provide the ability to sim-
ulate a range of service failures in a pre-
dictable manner.

4. A rejuvenation service based on the GT3
toolkit aimed at providing a component
that implements service rejuvenation

5. Extensions of BPEL4WS to consider fault
tolerance, this provides explicit fault-
tolerant construction in BPEL.

Information services play a key role in providing
the information that guides particular decisions
taken in providing a composed service. Access
to information services plays a key role in co-
ordinating the individual components. In this
section we outline some of the considerations in
deciding on a prototype infrastructure for the
project.

4.1 Information Services

The architecture section of this paper de-
scribes the service classification and depend-
ability databases used to achieve service dis-
covery. Here we identify an infrastructure to
meet the requirements laid out in the archi-
tecture. This infrastructure is being utilised
to build initial prototypes of our system. Our
choice of infrastructure will evolve as we learn
from experience of the prototypes.

4.1.1 Service Data

The underlying architecture of Grid Services,
namely the Open Grid Services Architecture
(OGSA), provides mechanisms that can be
utilised to achieve service discovery. Service
Data is one such mechanism that can be used to
encapsulate information about a service. Infor-
mation that is critical in this context is service
classification and quality of service. The rest of
this section details the mechanisms and schema
for describing service related information and
the processes that utilise this information.

Service Data is a collection of information
that is associated with a Grid Service. Service
Data is encapsulated as Service Data Elements
(SDEs) that represent XML based containers
for structured information [5]. SDEs are linked
to every Grid Service instance and are acces-
sible via the Grid Service and Notification in-
terfaces. Service discovery is facilitated by in-
formation held in service data. When select-
ing services we use matching upon the service
data information against our own requirements.
The latest implementation of the OGSA frame-
work, Globus toolkit version 3.0, has service
data at the heart of all service discovery, form-
ing the Monitoring and Discovery Service ver-
sion 3 (MDS-3) which supercedes the LDAP
based MDS-2.

Service data is represented in XML, in keep-
ing with all elements of OGSA, but there are
no restrictions on the structure of the XML.
The most elementary way of imposing a struc-
ture on the Service Data is to apply an XML
Schema. The schema that is used depends upon
the requirements of Grid; in our case we want
to identify services that:

a) have the correct interface and functionality
required by the service we aim to provide

and

b) have dependability attributes that ensure
the composed service achieves its promised
level of dependability.

4.1.2 Service Discovery

Service discovery relies upon the knowledge of
what sort of service you are invoking. A par-
tial picture of this is painted by the WSDL de-
scription of the service interface. However, the
service interface does not describe the function-
ality of the service. An example is two services
providing the “add interface”, an add operation
with two integer inputs and an integer output;

the add operation is invoked on both services by
passing the integer value 1 to both the inputs;
one service returns the integer value 2 and the
other the value 11; both services have operated
correctly upon the same interface but have dif-
ferent functionality. The example demonstrates
the requirements for a classification of services
based upon functionality and interface type.

Much research has taken place in the area
of classification ontologies led by the notion of
the Semantic Web. Current proposals for on-
tologies centre on frame based languages such
as OWL [6]. These languages are very simi-
lar in structure to object oriented programming
languages with the notion of class inheritance
at their heart. DAML-S [7] is a leading exam-
ple of a frame based ontology language that is
designed principally for representing Web Ser-
vices within the semantic web. It is not the in-
tention of this project to perform research into
service classification or to implement a complex
ontology language. Instead in our prototype we
have opted for a simple classification schema
within the service data element container. Ev-
ery service belongs to a particular named class.
The named class is then used as the criterion
for discovery. This classification mechanism in
addition to the WSDL description constitutes
the service functionality database.

4.1.3 Dependability Attributes

We require services be endowed with informa-
tion that informs potential clients of the qual-
ity of service with regards to a series of impor-
tant criteria, namely dependability. Like the
service classification, these QoS parameters are
expressed within the context of service data ele-
ments. The originator for this QoS information
can be the services themselves, but we envisage
that the QoS metrics are more likely to come
from the clients or a trusted third party. Many
QoS specification languages have been devel-
oped, primarily in the field of distributed mul-
timedia applications. Jin and Nahrstedt [8] and
Aurrecoechea et al [9] provide a good contrast
of these languages including the resource spec-
ification language (RSL) created by Globus for
toolkit versions 1.0 and 2.0. QoS is expressed
at three layers: user, resource and application.
User layer QoS represents a series of parame-
ters that are set by the user, usually through a
graphical user interface, implying that the pa-
rameters must be simple. Resource layer QoS
represents parameters relating to the physical
hardware environment such as CPU allocation.

Service oriented architectures represent a vir-
tualization of resources where applications are
composed of lower level services. Application
level QoS is in keeping with the service ori-
ented paradigm because application developers
express their requirements for a a given level of
QoS from a service thus controlling the quali-
ties of that service [8].

Our criteria for selecting a specification lan-
guage were primarily simplicity and expressive-
ness. In addition a script and control based lan-
guages such as SafeTcl and fuzzy-control were
dismissed being too complex for our require-
ments. QoS Modeling Language (QML) devel-
oped by HP Laboratories [10] is an application
layer, parameter based, QoS specification lan-
guage [8]. QML is a generic language that pro-
vides specification refinement (similar to object
oriented inheritance) and simple contract types
such as reliability and performance. The sim-
plicity of QML does not mask its ability to ex-
press complex QoS specifications, for example
using percentiles, variance and frequency [10].
We have selected QML as a way of specifying
QoS requirements within the service discovery
phase of this project. Unfortunately, QML de-
spite its name is not an XML based language,
thus we have taken a subset of the QML specifi-
cation [10] and implemented it in XML Schema.

QML defines categories named contract
types for conformance in given dimensions.
Each dimension corresponds to a domain of el-
ements that are either defined manually or are
built in numeric types. A contract is a set of
QoS restrictions upon the dimension domains
defined within the contract type. Dimension
domains have ordering applied to their elements
to allow certain elements to be stronger and
therefore conform to weaker elements. For ex-
ample if a latency of ten seconds is required,
then a latency of nine or less is acceptable, in
this case nine is said to be a stronger element in
the dimension domain latency than ten. Con-
tracts can be specialised using the refine rela-
tionship to form more stringent contracts, how-
ever, all sub contracts must still conform to the
original contract type. Profiles are used to link
QML contracts to interface (or portType) def-
initions.

4.1.4 Service Matching

QML is used both to specify QoS requirements
and to express QoS information for specific ser-
vice instances. QML specifications are included
in the service data for our Grid Service in-

stances. These definitions will occur within the
SDE sections of each service description. An
aggregation of the QoS service data elements
constitutes the service dependability database.

Service matching is notionally a single pro-
cess, however, the process is split into two
phases. In the initial phase, the services are
actually discovered using the service classifica-
tion as criterion. Services are retrieved in the
form of Grid Service handles with additional
service data elements containing the QoS spec-
ifications. A second phase exists that uses the
QoS information for each of the services to iden-
tify the service that is most appropriate for the
present task. The job of identifying the service
is done by the main engine because of the dy-
namic nature of the engine means that the QoS
requirements for a given task are only identi-
fied at the last minute. Different services may
be “plugged” into a workflow in combination
to identify end-to-end QoS given the QoS in-
formation for each service. Early implementa-
tions of the engine use exhaustive algorithms
to test the best combinations to give the best
QoS. Future developments will concentrate on
optimising this service matching process. The
second phase of the matching process is implic-
itly tied to the engine. However, the service
classification matching can be delegated to an
index service.

5 Testing

In order to help verify correctness of opera-
tion of the engine, we have developed a frame-
work which allows us to (largely) transpar-
ently “wrap” arbitrary Grid Services and con-
trol their apparent behaviour by modifying,
suppressing, or injecting messages at the service
interface level. These impositions are scripted,
so we can isolate constituents of a composition,
cause them to appear to fail in various ways,
and then observe the system’s reaction.

This facility is particularly important be-
cause our composed services include fault-
tolerance capabilites and in developing our ap-
proach we need to test both the real-time mon-
itoring of services we use to detect failure and
communicate it to the composed service and to
test the fault tolerant mechanisms included in
the composed services.

Once we have established that our monitor-
ing and fault tolerance is robust we will re-
quire this framework in our experiments with
the system. The ability to script failure scenar-

ios across a distributed network of Grid Services
will help us to measure our ability to deliver
improved level of service in context of networks
with “known” (in this case, manufactured) de-
pendability metrics.

6 Flexible framework

Our work to date has concentrated on creat-
ing a working prototype of the architecture de-
scribed earlier. At the time of writing that pro-
totype is close to working. However, it is un-
likely that the prototype will provide an ideal
solution to the problem. In the end our ap-
proach is to provide a flexible framework for
the provision of dependable Grid Services.

In the current prototype we are considering
the following (non-exhaustive) list of issues that
will help direct our next steps in the project:

1. The two service databases may in fact be
a single entity (MDS perhaps).

2. Service monitoring may be undertaken by
third parties, or services may be trusted to
advertise their own metadata honestly.

3. All monitoring may in fact be supplanted
by service level agreements.

4. The finer nuances of failure detection may
be service-specific so the framework must
admit specialised detection mechanisms.

Clear separation of design components will ad-
mit all of this flexibility. The greatest such is-
sue arises in the core engine: what language
describes the composition, and how is that
then executed? Several candidates (none open
source) exist, and we hope to achieve an im-
plementation which can be “ported” to a new
composition engine with a minimum of effort.

7 Conclusions

Our project is still in its early stages. We
took an early decision that our work should
be based on the GT3 (OGSA) framework since
that is likely to be widely used by the e-Science
community. Our experience over the past six
months has been that the GT3 platform is still
quite unstable and that has led to consider-
able problems in developing components that
depend on detailed issues of the implementa-
tion of the toolkit. However, we believe that
the service-orientation of GT3 provides a good

basis for the provision of dependable services
using the techniques outlined in this paper.
This paper describes our provisional archi-
tecture and implementation, unfortunately at
the time of writing we have yet to evaluate our
work. This will be reported in later papers.

References

[1] J. C. Laprie. Dependability — DBasic
Concepts and Terminology, volume 5 of
Dependable Computing and Fault-tolerant
Systems. Springer-Verlag, 1992. IFIP WG
10.4.

[2] B. Littlewood. The impact of diversity
upon common mode failures. Reliability
Engineering and System Safety, 51:101—
113, 1996.

[3] K. Gottschalk.
web services

Introduction to
architecture. http:
//www.research.ibm.com/journal/
sj/412/gottschalk.html.

[4] A. Keller and H. Ludwig. The WSLA
framework: Specifying and monitoring ser-
vice level agreement s for web services.
IBM Research Report, May 2002.

[5] I. Foster, C. Kesselman, J. Nick, and
S. Tueke. The physiology of the grid:
An open grid services architecture for dist
ributed systems integration. Open Grid
Service Infrastructure WG, Global Grid
Forum, 2002.

[6] D. L. McGuiness and F. van Harmelen.
OWL web ontology language overview.
2003.

[7] S. Mcllraith and D. Martin. Bringing se-
mantics to web services. IEFE Intelligent
Systems, 18(1):90-93, 2003.

[8] J. Jin and K. Nahrstedt. Classification and
comparison of QoS specification languages
for dist ributed multimedia applications.
2002.

[9] C. Aurrocoechea, A. Campbell, and
L. Hauw. A survey of QoS architectures.
Multimedia Systems, 6(3):138-157, 1998.

[10] S. Frolund and J. Koisten. QML: A lan-
guage for quality of service specification.
1998.

