Building Computational Science Portlets using
Rapid—A Reference Manual

Jos Koetsier and Jano van Hemert

Rapid

giving computational
science a friendly face

version 2.0

Abstract

This manual provides the main concepts required to use Rapid as well as a
reference for the XML-based configuration used to develop portlets. Rapid is
designed to quickly prototype, develop and deploy portlets that become part of a
web portal. Its main purpose is to allow rapid development of user interfaces for
dedicated tasks and applications that need access to remote compute resources.
It has many features to make it easy to create these portlets as it can connect to
different compute resources, handle remote file systems and deal with all aspects
of submitting compute jobs.

Contents

2 Overview]

3 The Rapid XML Document

3.1.2 PBS ...

3.3 Imitialising ajob|
B3I Variabled
8.3.2 Data types|]
3.3.3 Data staging]

4.1.1 Example.

4.1.2 Jython Class path and Python path|

|5 Generating the portlet)

5.1 ependencies| L.

BI12 Apache Ant].o oo ...

9.2 Rapid portlet generation and installation|

Chapter 1

Introduction

In many scientific disciplines, the demand for computational power has increased
dramatically and is likely to grow even further in the future. New techniques,
such as micro array analysis in biology, generate ever larger data sets that need
to be analysed. Sciences such as astronomy and physics are developing more
accurate instruments, that, coupled with new and more complicated algorithms
require ever larger computing resources. These new innovations and techniques
mean that for many applications simple computation on a desktop computer
can no longer be considered adequate.

Thankfully, the demand for more computing power is mirrored by the avail-
ability of newer and faster High Performance Computing resources. For ex-
ample, the list of top 500 supercomputers in the world shows that available
computing power has increased exponentially for the last fifteen years. New
developments in Grid Computing enable users to access even more computing
power by allowing users to submit computational tasks transparently to not
one, but several, often heterogeneous, resources.

Unfortunately, high performance computing comes at the price of increased
complexity. Submitting a computational task to a cluster or grid often requires
issuing a set of complex commands through a command line interface. This is
further complicated by the necessity of some form of security infrastructure to
regulate access to often expensive resources. Users need to request certificates,
download proxy certificates and understand the security implications of their
actions. Accessing computing power is no longer a matter of double-clicking an
application on a desktop, but more and more requires an in-depth knowledge of
computer science, which not all scientists possess.

In order to alleviate this burden on the researcher, scientific applications are
often wrapped in a user interface. In the grid community, the use of portals is
often considered the preferred solution mainly due to its distributed nature. No
complicated installation of software is necessary; users can log on to the portal
from any computer, simply by using the browser supplied by their operating
system. An added advantage is that security is dealt with by the portal. Most
portals offer some sort of login mechanism and issue privileges using a role based
access mechanism, allowing for fine-grained security to be applied.

When considering the state of the art of current portlets that allow users
to submit tasks to clusters or grids, roughly two approaches can be identified.
First there is the generic portlet. This type of portlet, in effect, wraps a com-

mand line job submission. For every parameter a text box or drop-down list is
supplied which the user needs to fill out. These portlets allow a wide variety of
computational tasks to be submitted, but at the cost of increased complexity.
This type of portlet is far from ideal, especially because we set out to shield the
user from all this complexity in the first place.

The other approach is to write a custom portal application for each compu-
tational task. We consider this type of portlet preferable to the generic portlet
of the first approach, because of its simplicity. Any user can access the power
of large compute clusters without the indepth knowledge required to perform a
command-line job submission. However, this approach does come at the cost
of increased development time spent on programming the portlets themselves.
It is often the case that there is simply not enough time and money available
to write a portlet for each new project. There is also the additional problem of
maintainability. When the portlet is finished, it requires an expert to maintain
it, fix bugs and perform upgrades.

The Rapid project is an attempt to address these issues. We propose an
automatic job submission portlet generation system. This system allows an ex-
pert to specify information about a job submission portlet in an XML file. This
can be information about file transfers, options to display to the user and the
available compute clusters as well as the security information required to ac-
cess them. The Rapid system takes this XML file and translates it into a fully
working JSR 168 compliant job submission portlet.

This approach gives us the benefits of both portlet types we discussed earlier.
On the one hand, users get a job submission portlet that shields them from any
complexity and on the other hand the time and effort to write and maintain a
generic portlet is greatly reduced. Generating a portlet in this way does reduce
flexibility somewhat however; not each portlet that can be written by hand can
be generated using Rapid. However, we think that using Rapid will be able
to meet most users’ needs and will allow scientists to make better use of the
available computing power.

Chapter 2

Overview

This section describes the high level concepts required to understand the mech-
anisms that are used in the Rapid System. The job submission model used by
Rapid is loosely based on the Basic Execution Service (BES) and the Job Sub-
mission Description Language (JSDL) standards. In these standards a method
of job submission is described, which (in its most basic form) consists of the
following stages:

1. Copy one or more files from one or more file servers into the host where
the computation takes place. (Stage in, or source file transfers)

2. Execute and monitor the job as it is executing. This job may consist of
several sub-jobs, for instance in the case of so-called parameter-sweeps.

3. Copy one or more files from the execution host (presumably the results
of the computation) to one or more file servers. (Stage out, or target file
transfers)

4. Visualise the results of the computation.

The Rapid system allows a template for such a job to be defined. The user
can pre-define a set of ’source’ and ’target’ file transfers, using methods such
as ftp, sftp, http or gsiftp. Defining the job itself follows the POSIX model,
consisting of a set of environment variables, an executable and a number of
parameters.

Obviously, submitting a pre-defined job is not very useful and therefore
the Rapid system allows a user to change the pre-defined job template, by
introducing a set of variables. Each variable is given a unique name and is
initialised with a default value as part of the job template. In the user interface,
the user is allowed to change these variables. The portlet developer can specify
which user interface element to use to change a variable. Rapid supports a wide
variety of input methods such as file browsers, radio buttons, lists and text entry
fields.

When a job is submitted the variables are substituted in place holders within
the job template. As an example, suppose we have an executable called ’fac-
torial’, which takes one parameter, which is a positive whole number for which
this program computes the factorial. We would specify this in the job template
as:

<executable>usr/bin/factorial</executable>
<parameter index="0">5</parameter>

This example always sets the first parameter to the value '5’. If we want the
user to be able to change this value, we add a variable which we call 'parame-
terValue’.

<variable name="parameterValue">
<single>
<value>5</value>
</single>
</variable>

This initialises the variable with a default value of ’5’. To bind this variable to
the parameter, we have to change the job template to:

<executable>/usr/bin/factorial</executable>
<parameter index="0">$(parameterValue)</parameter>

The $(<name>) notation allows a value to be substituted by the variable,
when the job is submitted. This notation can be used in most parts of the Rapid
XML file.

In the user interface section of the Rapid XML file we can now introduce a
user interface element, that enables the user to examine and change the value
of a variable. For example a list of possible values can be added, from which
the user makes a selection:

<page name="configure job">

<x:h1>Choose factorial</x:h1>
<variable name="parameterValue">
<list>
<item value="1">1</item>
<item value="5">5</item>
<item value="20">20</item>
</list>
</variable>

</page>

In the following sections we will discuss all elements in the Rapid XML file.

Chapter 3

The Rapid XML Document

The <rapid> element denotes the root of the Rapid XML document and contains
two namespaces: the rapid namespace: hitp://www.ed.ac.uk/Rapid and the
XHTML namespace: hitp://www.w3.orq/1999/xhtml. Elements from the Rapid
namespace are used to set the job template, initialise file servers and configure

user interface elements.

The XHTML interface is used for markup, such as

tables, fonts and incorporating images.

Element <rapid>

Root element of the Rapid XML document.

Child Elements

<condor> Defines a new Condor job submission instance. (optional)

<sungridengine> Defines a new Sub Grid Engine job submission instance.
(optional)

<pbs> Defines a new PBS job submission instance. (optional)
<fork> Defines a new Fork submission instance. (optional)
<local> Defines a local file system. (optional)

<ftp> Defines an (s)ftp file system. (optional)

<http> Defines an http file system. (optional)

<gsiftp> Defines the gsiftp file system. (optional)
<initialise> Initialises a new job template.

<page> Defines a page int the user interface.

<persistence> Defines state preservation. (optional)

Example

<?7xml version="1.0" encoding="UTF-8"7>
<rapid xmlns="http://www.ed.ac.uk/rapid"
xmlns:x="http://www.w3.0org/1999/xhtml">
<!-- Contents go here -->
</rapid>

3.1 Job submission servers

A job submission server is the compute resource to which a compute job is sub-
mitted. In the rapid namespace, <condor>, <sge>, <pbs> and <fork> elements
support Condor, Sun Grid Engine, PBS and simple forking a new process, re-
spectively. They are the immediate child elements of the <rapid> root element.

3.1.1 Condor cluster

The <condor> element allows Rapid to submit to a Condor cluster.

Element <condor>
Attributes

e name: a unique identifier

Child Elements

e <bin>: This Element specifies the location of Condor execution files 'con-
dor_submit’ and ’condor_q’. (optional)

e <condorconfig>: Path to the condor_config file. (optional)

e <universe>: Defines the runtime environment under which Condor clus-
ter should execute a job. (optional)

e <filesystemname>: Indicates through which file system (specified in [3.2)
the condor submit host is accessed. Supports SSH and Local.

e <submitline>: Defines an additional line in a Condor submit file. (zero
or more)

e <pollingtime>: The amount of time between two status updates in mil-
liseconds. (optional. default is 10000)

Example

<condor name="condor">
<bin>/home/condor/condor/bin</bin>
<universe>vanilla</universe>
<submitline>priority = 10</submitline>
<submitline>image_size = 20</submitline>
<filesystemname>CondorFS</filesystemname>
<condorconfig>/etc/condor/condor_config</condorconfig>

<pollingtime>5000</pollingtime>
</condor>

3.1.2 PBS
The <pbs> element allows Rapid to submit to a PBS scheduler.

Element <pbs>
Attributes

e name: a unique identifier

Child Elements
e <bin> Specifies the location of the PBS binary files 'gstat’ and ’qsub’

e <filesystemname> Indicates through which file system (specified in
the condor submit host is accessed. Supports SSH and Local.

e <option> Defines an additional lines in the PBS submit file. (zero or
more)

e <pollingtime> The amount of time between two status updates in mil-
liseconds. (optional. default is 10000)
Example

<pbs name='"pbs">
<bin>/opt/pbs/bin</bin>
<option>#PBS -1 nodes=1:ppn=$ (number0fCPUS),cput=12:00:00</option>
<filesystemname>PBSFS</filesystemname>

</pbs>

3.1.3 Sun Grid Engine

The <sungridengine> element allows Rapid to submit to a Sun Grid Engine
cluster.

Element <sge>
Attributes

e name: A unique identifier

Child Elements
e <root>: Path to SGE_ROOT. (optional).

e <filesystemname>: Indicates through which file system (specified in
the Sun Grid Engine submit host is accessed. Supports SSH and Local.

e <option>: Lines to add to a SGE submit script. (zero or more)

e <pollingtime>: The amount of time between two status updates in mil-
liseconds. (optional. default is 10000)

Example

<sungridengine name="sge">
<root>/home/sge/sge</root>
<filesystemname>LocalFS</filesystemname>
<option>#$ -M admin@nesc.ac.uk</option>
</sungridengine>

3.1.4 Fork

The <fork> element configures a simple 'fork’ submission resource where the
job is simply run as a new process.

The <fork> Element

Attributes

e name: A unique identifier

Child Elements
e <filesystemname>: Indicates through which file system (specified in
the process is to be run. Supports SSH and Local.
Example

<fork name="fork">
<filesystemname>LocalFS</filesystemname>
</fork>

3.2 File systems

There are five elements that are used to define file systems: <ssh>, <http>,
<ftp>, <local> and <gsiftp>. These elements are child nodes of <rapid>
and each requires a unique ‘name’ attribute used as a reference throughout the
document. All filesystem tags contain a <url> child element of which the body
specifies the complete URL of the file system. Some elements may encompass
additional child nodes, depending on authorisation and authentication. Those
file system elements are detailed in the following sections.

3.2.1 HTTP

The <http> element is used for both http and https servers. Neither of these
requires authentication.

Element <http>
Attributes

e name: A unique identifier

10

Child Elements
e <url>: URL of the file system

Example

<http name="http">
<url>http://www.inf.ed.ac.uk/</url>

</http>

<http name="http2">
<url>https://www.omii.ac.uk/</url>

</http>

3.2.2 Local file system

The <local> element allows access to a local file system. Similar to <http>,
there is no authentication. This file system refers to the file system the portal
resides on and not the users’ file system.

Element <local>
Attributes

e name: A unique identifier

Child Elements
e <url>: URL of the file system

Example
<local name="Local File System">
<url>file:///home/portaluser/</url>
</local>

3.2.3 FTP

The <ftp> element is used for fip servers and requires authentication using a
username and password.

Element <ftp>
Attributes

e name: A unique identifier

Child Elements

e <url>: URL of the file system. Paths are relative to the users’ home
directory, unless preceded with a %2f sequence.

e <username>: Username used to log into the ftp server

e <password>: Password

11

Example

<ftp name="myftpserver">
<url>ftp://host.university.ac.uk/full/path/</url>
<username>myname</username>
<password>mypassword</password>

</ftp>

3.2.4 SSH

The <ssh> element is used for sftp servers and requires authentication either
using a username and password or by supplying an identity file.

Element <sftp>
Attributes

e name: a unique identifier

Child Elements

e <url> URL of the file system. Paths are relative to the users’ home
directory, unless preceded with a %2f sequence.

e <username> Username
e <password> Password

e <identityfile> File name of the identity file.

Example

<ssh name="mysftpserver">
<url>sftp://host.university.ac.uk/full/path/</url>
<username>myname</username>
<password>mypassword</password>

</ssh>

3.2.5 GSIFTP

The <gsiftp> element describes a Grid FTP server. For authentication, a valid
X509 proxy certificate must be obtained through a MyProxy server. Paths are
relative to the users’ home directory, unless preceded with a %2f sequence.

Element <gsiftp>
Attributes

e name: A unique identifier

Child Elements
e <url>: URL of the file system

e <myproxyhost>: Hostname of the myproxy server

12

<myproxyport>: Port through which to access the myproxy server
<myproxyusername>: Username

<myproxypassword>: Password

Example

<gsiftp name="mygisftpserver">

<url>gsifpt://host.university.ac.uk/full/path/</url>
<myproxyhost>myproxy.university.ac.uk</myproxhost>
<myproxyport>7512</myproxyport>
<myproxyusername>myusername</myproxyusername>
<myproxypassword>secret</myproxypassword>

</gsiftp>

3.3

The <initialise> element is used to define a template for a new job. It can
contain nine child elements. The <datastage> element involves the file staging
details and the <posix> element is used to set parameters of a job according
to the POSIX model. The compute resource to use is set in the <submitto>
element and the <variable> and <static> elements can be used to declare
variables and set initial values. The tags <preprocess> and <postprocess>
can invoke a series of actions, when a new job is created and finished, respec-
tively. The <userunknown> tag determines what to do when the user has not
authenticated to the portal, and, finally, the <plugin> tag declares all available

Initialising a job

jython plugins.

Element Initialise

<datastage> (optional)
<posix> (optional)
<submitto> (optional)
<preprocess> (optional)
<postprocess> (optional)
<userunknown> (optional)
<variable> (optional)
<static> (optional)

<plugin> (optional)

13

3.3.1 Variables

As explained in section [2] a job submission can be configured by inserting vari-
ables into the job template, filesystem definitions and compute resource defini-
tions. These variables are initialised as specified and can be changed in various
ways. For example, a user can change the value of a variable by choosing an
item from a drop down box or a Jython script can be called that changes the
variable.

Rapid distinguishes two types of variables: ’static’ variables and ’regular’
variables. 'Regular’ variables are tied to a particular job submission. When
a user finishes configuring a job and submits it, the current set of 'regular’
variables are stored and bound to that job submission and a new set of regular’
variables is initialised to be configured for the next submission. The job is
queued, instantiated and executed using the stored set of 'regular’ variables.
Once a job has been submitted, the set of ‘regular’ variables which is bound to
that submission cannot be changed anymore, but can be queried through the
job monitoring tags.

In contrast to 'regular’ variables, 'static’ variables are defined across all jobs.
When the portlet starts, all ’static’ variables are initialised once and will not
be bound, stored or reinitialised after job submissions. ’Static’ variables can
be modified in the same way as 'regular’ variables, but cannot be used in the
job template as this would mean that running jobs can be altered, resulting in
unpredictable behaviour. Static variables can be displayed, modified and copied
to regular variables using actions or Jython scripts.

Variables are declared using the <variable> or <static> element. The
value of a variable can referred to by using the format: $(VARIABLE).

Element <variable>

Defines a ‘regular’ variable
Attributes
e name: Name of the variable.

e retainvalue: Set to 'true’ to retain the value of the previous job submis-
sion. (optional)

Element <static>

Defines a ’static’ variable

Attributes

e name: Name of the variable.

Example
<initialise>
<variable name="regularvariable" retainvalue="true">
<single>
<value>a value</value>
</single>

14

</variable>
<static name="staticvariable">
<uuid/>
</variable>
</initialise>

<page>
The value of the regular variable is $(regularvariable)
The value of the static variable is $(staticvariable)
</page>

3.3.2 Data types

Each variable has a data type associated with it. There are currently four
types, specified by the elements <single>, <array>, <range> and <uuid>. The
<single> element is used to indicate simple, single values, the <array> element
is used to specify multiple values and the <range> element is used to specify
a range of numbers. The <uuid> element generates a single new Universally
Unique IDentifyfier (UUID) for each new job that is generated. The values
themselves are specified in the body of <value> elements which can appear as
direct children of <single>, <array> or <range>. submit, where the first job
will use the first value from each array, the second job will use the second value
and so on.

Elements <single>, <array>

Child Elements

e <value> specifies a value (one or more if parent is <array>, one for
<single>).

e <min> sets the minimum possible value. Implies <value> is a number.
e <max> sets the maximum possible value. Implies <value> is a number.

e <regexp> sets a regular expression the <value> elements must conform
to.

e <errormessage> error message to display if <value> elements contain
invalid values.

Example

<array>

<value>12</value>

<value>23</value>

<value>44</value>

<regexp>[0-9]+</regexp>

<errormessage>Wrong Input! Please enter a whole, positive number</errormessage>
</array>

15

Element <range>
Child Elements

e <min> Sets the minimum of the range.
e <max> Sets the maximum of the range.

e <step> Sets the step size to use

Example

<range>
<min>-1.0</min>
<max>0.6</max>
<step>0.3</step>
</range>

This example generates the range —1.0, —0.7,—0.4,—0.1,0.2,0.5

Element <uuid>

Automatically creates a new Universally Unique IDentifyer (UUID) when a new
job is created.

Example

<uuid/>

3.3.3 Data staging

Data staging in the Rapid system follows the staging model as defined in JSDL.
One data stage instance can contain a source and target transfer. The source file
transfer copies a file or directory into the job execution engine and is performed
before running a job. Once the job execution has finished, the target file transfer
moves a file or directory out of the job execution engine.

Rapid defines three additional parameters for a data stage instance. First, a
filename uniquely identifies the file called in the job execution engine. Second, a
creation flag determines how the file will be created in the job execution engine
and finally, a deleteontermination flag indicates whether the file will be removed
from the execution host once the job is completed.

Element <datastage>

The <datastage> element defines a new data stage operation and has no at-
tributes.

Child Elements

e <source> File or directory to copy into the compute resource. Performed
before executing the job.

e <target> File or directory to copy results to from the compute resource .
Performed after the job has finished executing.

16

e <filename> Name of the file or directory in the compute resource.

e <deleteontermination> Determines whether the file will be deleted from
the compute resource, once the job has finished. (optional)

e <creationflag> Refers to the creationflag of the file. Its value can be
either APPEND, OVERWRITE, or DONTOVERWRITE. (optional)

e <dotarget> Performs the target data stage, depending on the success
state of the job. Values are: ALWAYS (always perform the target data
stage), ONFAILURE (only when the job failed) and ONSUCCESS (only
perform the target data stage when the job completed successfully).

e <multiple> This element is used if multiple files or directories should be
staged.

Element <source> and <target>

Defines the file system and path used as a source or target file transfer.

Child Elements

o <filesystem> The name of the file system used in either the source or
target file staging.

e <path> The full path of either ‘source’ or ‘target’ file stage.

Element <multiple>

This element is used to stage multiple files or directories at the same time. The
number of files or directories is equal to the number of values contained in the
variable it refers to. Tis element can be used if there are one or more multi-
valued variables (<array> or <range>) embedded in the data stage definition
and causes the execution engine to iterate over each value of the variables for
each file transfer.

Attributes

e variable The name of the variable.

Example

<datastage>

<source>
<filesystem>datarepository</filesystem>
<path>/var/data/input.data</path>

</source>

<target>
<filesystem >httpserver</filesystem>
<path>/var/www/htdocs/results.txt</path>

</target>

<filename>result.txt </filename>

<deleteontermination>true</deleteontermination>

<creationflag>0OVERWRITE</creationflag>

17

<dotarget>0ONSUCCESS</dotarget>
<multiple variable="numberoffiles"/>
</datastage>

3.3.4 Posix

Job execution in Rapid follows the Unix POSIX model and all its elements are
grouped under the <posix> element.

Element <posix>

Child Elements

e <executable>: Denotes the name of the executable to run.

e <stdin>, <stdout>, and <stderr>: Refer to the standard input, output
and error, respectively.

e <workingdir>: Element specifies the directory running the executable.
e <parameter>: Parameters of the executable.
e <environmentvariable>: Environment variables in a shell.

e <multiple>: Used for array jobs.

Example
<initialise>
<posix>
<executable>./java</executable>
<environmentvariable>
<name>CLASSPATH</name>
<value>junit.jar:log4j.jar</value>
</environmentvariable>
<workingdir>/home/user/data001</workingdir>
<parameter index="0">-jar</parameter>
<parameter index="1">/opt/programs/science/calculate.jar</parameter>
<parameter index="2">$(valuelist)</parameter>
<multiple variable="valuelist"/>
</posix>

</initialise>
Element <parameter>

Parameter of the executable.

Attributes

e index: Index of the parameter, starting at 0.

18

Example
<initialise>
<parameter index="0">-alR</parameter>
</initialise>
Element <environmentvariable>

Shell environment variable defined as NAME=VALUE.

Child Elements
e name: Name part of the environment variable.

e value: Value part of the environment variable.

Example
<initialise>
<environmentvariable>
<name>CLASSPATH</name>
<value>junit.jar:log4j.jar</value>
</environmentvariable>
<environmentvariable>
<name>PATH</name>
<value>/usr/bin:/bin:/home/user/mybin</value>
</environmentvariable>
</initialise>
3.3.5 Pre and postprocessing

The user can execute a set of actions before a new job is edited by the user
and after the job has completed executed. This can, for example, be used to
load the result of an execution into a variable, so it can be displayed in a job
monitor.

Elements <preprocess> and <postprocess>

Postprocessing and preprocessing.

Child Elements

The child elements of <preprocess> and <postprocess> are actions, such as
defined in section which are executed in order.

o <loadfile>

o <savefile>

e <deletefile>

e <copyvariable>
e <callprogram>

e <runplugin>

19

Example
<initialise>
<preprocess>
<loadfile variable="myfilevar" path="/path/to/my/file" filesystem="myfilesystem"/
<callprogram variable="myprogramvar" path="/path/to/my/program.sh" filesystem="my
</preprocess>
</initialise>
Element <userunknown>

This element determines which page to load if a user has not authenticated.
If this element is not present, the first page is simply loaded and the portlet
proceeds as normal

Child Elements

The child elements of <userunknown> can contain one 'navigate’ action.

e <navigate>

Example
<initialise>
<userunknown>

<navigate nextpage="user_not_logged_in_page"/>
</userunknown>

</initialise>

3.3.6 Execution node

By default, a job is submitted to the execution node specified under the <submitto>
element. The value of this element refers to a submission engine, previously de-

fined in section [3.11
Element <submitto>
Example
<initialise>
<submitto>mycluster</submitto>

</initialise>

3.3.7 Plugins

Plugins are declared using the <plugin> element. The name of the file as well
as the class to use must be given. The plugins are assumed to reside in the
configuration/plugins directory.

20

Element <plugin>

Declares a new plugin.

Attributes

e name: Unique name of the plugin.
e file: Name of the file to use WITHOUT the *.py’ extension.

e class: Name of the class to use.

Example

<plugin name="myplugin" file="myjythonfile" class="rapidclass"/>

3.4 User Interface

The user interface (UI) is defined in a set of <page> elements, that are immediate
children of the <rapid> root element. When a Rapid portlet starts up, the view
associated with the first <page> element that is defined within the document is
loaded up and displayed. The user can navigate between views by pressing a
button, containing a 'navigate’ action, as described in section [3.4.2

Element <page>

A page containing markup and rapid user interface elements.

Attributes

e name: unique name of the page.
Child Elements

e <variable>

o <button>

e <fileupload>

e <joblist>

e <subjoblist>

e <setjob>

e <onload>

e elements from the XHTML namespace

Example

<page name='"pagel">
<!-- page layout is defined here -->
</page>

21

Child elements of the <page> can be taken from both the zhtml and the
rapid namespace. The markup of the user interface is written using standard
XHTML. The logic of the portlet as well as user input is handled by elements
from the rapid namespace.

3.4.1 User interface elements

The rapid system enables a user to change or display a variable by specifying
a <variable> element as child element of the <page> element. How this is
done, is defined in the child elements of the <variable> element, which are
currently <1ist>, <checkboxlist>, <checkbox>, <radio>, <browser>, <text>,
<editor> and <output>.

Element <variable>

Enables a user to change a variable or display the value of this variable.

Attributes

e name: Name of the variable to change or display.

Child Elements
e <list>
e <checkbox>
e <checkboxlist>
e <radio>
e <browser>
o <text>
e <editor>

e <output>

Example

<variable name="variableone">
<text/>
</variable>

Element <list> and <radio>

Shows a list of items, a dropdown list or a set of radio buttons. If using a list
with an ’array’ value, the user can will be able to select multiple values.

Attributes
e refresh: if 'true’, the page will be reloaded if a selection is made.
e size: <1list> only. Length of the list. If the length is 1, this user interface

element will be a dropdown list.

22

e index: <radio> only. An index from 0. If the value edited is an ’array’
value, it refers to the index-th element in the array. If it is a 'range’ value,
then 0 refers to the minimum value, 1 refers to the maximum value and 2
refers to the step size.

e class: specifies a classname for the HTML element that will be generated.
To be used with Cascading Style Sheets.

e id: specifies an id for the HTML element that will be generated. To be
used with Cascading Style Sheets.
Child Elements

e <item> (one or more)

Example 1

<list refresh="true" size="1">
<item value="itemone'">select item one</item>
<item value="itemtwo">select item two</item>
<item value="itemthree">select item three</item>
</list>
Example 2

<radio refresh="true" index="2">
<item value="itemone"/>1.0
<item value="itemtwo"/>2.0
<item value="itemthree"/>3.0
</radio>

Example 2 allows a user to set the step size of a range value.

Element <checkbox>
Adds a checkbox.

Attributes

e checked:the variable will get this value if the box is 'checked’
e unchecked:the variable will get this value if the box is 'unchecked’

e class: specifies a classname for the HTML element that will be generated.
To be used with Cascading Style Sheets.

e id: specifies an id for the HTML element that will be generated. To be
used with Cascading Style Sheets.

Example

<checkbox checked="you checked this option" unchecked="this option was not checked"/>

23

Element <checkboxlist>

Adds a list of checkboxes. This element can only be used with ’array’ values.
The value of each checkbox the user selects will be added to the ’array’ value.
Each checkbox that is not selected will be ignored. The resulting ’array’ value
will have as many elements as values the user selected.

Attributes

e class: specifies a classname for the HTML element that will be generated.
To be used with Cascading Style Sheets.

e id: specifies an id for the HTML element that will be generated. To be
used with Cascading Style Sheets.
Child Elements

e <item> (one or more)

Example

<checkboxlist>
<item value="itemone"/>select item <x:hl>one</x:h1>
<item value="itemtwo"/>select item <x:hl1>two</x:hi1>
<item value="itemthree"/>select item <x:h1>three</x:hi1>
</checkboxlist>
Element <item>

Adds a choice to a <1ist>, <radio>, or <checkboxlist>

Attributes

e value: The value to set into the job.

Child Elements

e <list> can contain text

Example

<checkboxlist refresh="true" size="1">
<item value="itemone"/>select item <x:hil>one</x:h1>
<item value="itemtwo"/>select item <x:hl1>two</x:hi1>
<item value="itemthree"/>select item <x:h1>three</x:h1>
</checkboxlist>
Element <text>

Adds a text box.

Attributes

e cols: Size of the text box in columns.

24

e rows: Size of the text box in rows. If omitted, a value of one is assumed.

e index.An index from 0. If the value edited is an ’array’ value, it refers
to the index-th element in the array. If it is a 'range’ value, then 0 refers
to the minimum value, 1 refers to the maximum value and 2 refers to the
step size.

e password:If the variable refers to a password in a filesystem, or is other-
wise a value that should not be echoed to the screen, set this attribute to
‘true’

e class: specifies a classname for the HTML element that will be generated.
To be used with Cascading Style Sheets.

e id: specifies an id for the HTML element that will be generated. To be
used with Cascading Style Sheets.

Example 1

<text cols="10" password="true"/>

Example 2

Specify Minimum Value: <text size="10" index="0"/>

Specify Maximum Value: <text size="10" index="1"/>

Specify Step Size: <text size="10" index="2"/>

Element <editor>

Adds a javascript editor to the page. This editor is taken from the ’editarea’
project (http://www.cdolivet.com) and resides in the ’javascript’ directory of
the rapidportlet distribution.

Attributes

e cols: Number of columns of the editor.
e rows: Number of rows of the editor.
e highlight:True / False: use syntax highlighting.

e syntax:coldfusion, css, java, pas, php, sql, vb, basic, c, cpp, html, js, perl,
python, ruby, tsql, xml

e toolbar:True / False. : display a toolbar.

e fontsize:number, indicating the size of the font.
o fontfamily:family of the font to use

e wordwrap:True / False. Use wordwrap.

e tabtospaces:True / False. Convert tabs to spaces.

25

Example 1

<variable name="editvariable>
<editor rows="20" cols="120" highlight="true" syntax="java"/>
</variable>

Element <browser>

Displays a file browser, allowing the user to navigate and select a file or directory.
The value of the variable will be the path of the file selected.

Attributes

e filesystem the name of the filesystem this browser uses. Can refer to a
variable.

e multiple Set to 'true’ to enable the user to select multiple files.
e refresh refresh after each selection.

e size: size of the file browser.

e files: set to 'true’ to allow files to be set.

e directories: set to 'true’ to allow directories to be set.

e filestyle: set a style to indicate the presence of a file.

e directorystyle: set a style to indicate the presence of a directory.

Example

<variable name="path">
<browser filesystem="$(filesystemVar)" size="15"
filestyle="color:blue" directorystyle="background-color:green"/>
</variable>
Element <output>

Displays the value of a variable. Can replace values.

Attributes

e default: String to display if the job value has not been set

Child Elements

e <replace> Replace the value by another string. Specify the value in a
‘search’ attribute and the replacement in the body.

e <pre> Used for <array> type. Displays a string before each value in the
<array>. Can contain XHTML elements.

e <post> Used for <array> type. Displays a string after each value in the
<array>. Can contain XHTML elements.

26

Example

<variable name="parameterValue">
<output>
<replace search="item1">this is item one</replace>
<replace search="item2">this is item two</replace>
<replace search="item3">this is item three</replace>
<pre>before</pre>
<post>after</post>
</output>
</variable>
Element <fileupload>
Allows a user to upload a file to any of the filesystems. The file upload takes
place immediately when updating the page.
Attributes

e size: size of the file upload input element (optional)
e filesystem: name of the filesystem to upload this file to.

e path:path to copy the file to. If this file is a directory, the file is copied
into that directory.

Example

<fileupload filesystem="ftp" path="/path/to/destination/" size="10">

3.4.2 Buttons

Rapid allows the portlet designer to add buttons that perform one or more
actions when pressed. Possible actions include navigating between pages, sub-
mitting jobs, loading and saving files, deleting jobs from a job monitor and
changing the value of a variable.

Element <button>

This element defines a button. Its child elements are a list of actions that are
performed in order.

Attributes

e size: size of the button.
e display: string to display on the button.

e class: specifies a classname for the HTML element that will be generated.
To be used with Cascading Style Sheets.

id: specifies an id for the HTML element that will be generated. To be
used with Cascading Style Sheets.

27

Child Elements

e <navigate>

o <submit>

o <loadfile>

e <savefile>

o <deletejob>

e <haltjob>

e <copyvariable>
e <callprogram>
e <runplugin>

e <refreshbrowsers>

Example

<button display="navigate and submit">
<navigate nextpage="secondpage"/>
<submit/>

</button>

Element <navigate>

Navigates to another page

Attributes

e nextpage:next page to load.

Element <submit>

Submits the job. Contains no attributes or child elements.

Elements <loadfile> and <savefile>

The element <loadfile> loads the contents of a file into the value of a variable.
Similarly, the element <savefile> enables a user to save the value of a variable
to a file.

Attributes
e filesystem: The name of the filesystem.
e path: Full path of the file.

e variable:Name of the variable.

28

Example

<variable name="contents">
<single><value/></single>
</variable>
<variable name="path">
<single><value>/path/to/my/file.txt</value></single>
</variable>

<page name='"pagename">

<variable name="contents">
<text cols="40" rows="20"/>
</variable>

<button display="Load File">
<loadfile filesystem="myfilesystem" variable="contents" path="$(path)"/>
</button>

<button display="Save File">

<savefile filesystem="myfilesystem" variable="contents" path="$(path)"/>
</page>
Element <copyvariable>

The element <copyvariable> copies the value of one variable to another

Attributes

e from: Name of the variable to copy

e to: Name of the destination variable

Example

<button display="Copy">

<copyvariable from="fromvar" to="tovar"/>
</button>
Element <deletejob> and <haltjob>

The element <deletejob> removes a job that has been submitted from the list
of jobs the portal knows about.. <haltjob> stops a job that is running on an
HPC. Both these elements are used in combination with a job monitor, which
selects the job which is to be deleted or halted.

Attributes

e selection: Selection as defined in a job monitor.

29

Element <callprogram>

The element <callprogram> executes a program or script and loads the stan-
dard output into the value of a variable.

Attributes

e filesystem: The name of the filesystem.
e path: Full path of the file.

e variable:Name of the variable.

Example

<variable name="contents">
<single><value/></single>
</variable>
<variable name="path">
<single><value>/path/to/my/executable.sh</value></single>
</variable>

<page name='"pagename">

<variable name="contents">
<text cols="40" rows="20"/>
</variable>

<button display="Execute Script">
<callprogram filesystem="myfilesystem" variable="contents" path="$(path)"/>
</button>
Element <runplugin>
The element <runplugin> executes the plugin. Once the plugin has executed
the output can be retrieved using the <plugin> element.

Attributes

e name: Name of the plugin to execute

Example

<button display="run plugin">
<runplugin name="myplugin"/>
</button>

Element <refreshbrowsers>

Reloads the contents of all filebrowsers.

30

3.4.3 Onload event

Before loading a page a set of actions can be executed.

Element <onload>

This element defines a list of actions that are performed in order when a page
loads.

Child Elements

e <loadfile>

o <savefile>

e <copyvariable>
e <callprogram>

e <runplugin>

Example

<page name='"mypage'">
<onload>
<runplugin name="myplugin"/>
</onload>
</page>

3.4.4 Job monitor

Job monitoring can be implemented using the <joblist> , <subjoblist> and
the <setjob> elements. The <joblist> element iterates through all submitted
jobs and allows the user to select a job by clicking on a radiobutton. If a job
contains a set of subjobs, the element <subjoblist> can be used to iterate
through any subjobs selected in a <joblist> element. The <setjob> element
refers to the selection made in the <joblist> for <subjoblist> element and
allows a more detailed view of a particular job to be presented. Adding a
<deletejob> element allows a user to delete a job from the job monitor and
the <haltjob> element stops a job that is running on a cluster.

Elements <joblist>, <subjoblist> and <setjob>

<joblist> iterates through all previously submitted jobs. If a job consists of
subjobs, <subjoblist> can be used to iterate through subjobs. <setjob> sets
the job selected a <selection> element, which is a child element of <joblist>
or of <subjoblist>.

The elements <datastage>, <posix>, <submitto> and <variable> ele-
ments have all been defined previously. However, if they appear as child ele-
ments of <joblist> and <setjob>, they can only be used to display values of
jobs that have been submitted and therefore do not contain input or output
child elements.

31

Attributes

e selection:<setjob>and <subjoblist> only. When used with <setjob>sets
the (sub)job that was selected. When used with <subjoblist>, this at-
tribute refers to a selection of a job in <joblist>.

Child Elements

e <submitto>

e <variable>

e <jobid>

e <selection> Used only in conjunction with <joblist> and <subjoblist>.
e <date>

e elements from the XHTML namespace

Element <jobid>

When a job has been submitted it is given a Job ID in the form of a UUID.
This Job ID can be displayed using this tag.

Element <status>

The status of a submitted job.

Element <selection>

This tag displays a radiobutton that can be used to select a job.

Attributes

e selection: unique name identifying the selection

Element <date>
The date the job has been submitted.

Example

<joblist>
<x:table border="1" width="800"> <x:tr> <x:td>
<selection name="mySelection"/>
</x:td> <x:td>
<date/>
</x:td> <x:td>
<jobid/>
</x:td> <x:td>
<status/>
</x:td> </x:tr>
</x:table>
</joblist>

32

<button display="delete job">
<deletejob selection="mySelection" />
<haltjob selection="mySelection" />
</button>

<subjoblist selection="mySelection">
<x:table border="1" width="800"> <x:tr> <x:td>
<selection name="mySubSelection"/>
</x:td> <x:td>
<date/>
</x:td> <x:td>
<jobid/>
</x:td> <x:td>
<status/>
</x:td> </x:tr>
</x:table>
</subjoblist>

<setjob selection="mySubSelection">
<x:hl>executable:
$ (executable)
</x:h1>
</setjob>

Element <plugin>

<plugin> element retrieves the output from a plugin that has previously been
executed. More information about plugins can be found in section

Attributes

e name name of the plugin as declared in the ’initialise’ section.

Example

<page name="view">
<plugin name="myplugin"/>
</page>

3.5 Persistence

In the default persistence model the Rapid system preserves the state of the
portlet as part of the current login session. As a consequence, all state informa-
tion, such as which jobs were submitted, which user they belong to and what
the status of each job is, is lost each time a user logs out or if the session expires.

If the state of the portlet is required to be maintained, a database or file
must be specified under the <persistence> tag, in which the portlet can store
this information.

When using persistence it is important that the database exists and is empty.

33

When upgrading Rapid to a new version, ensure that the database is cleared
before running the portlet.

Element <persistence>

Child Elements

<username> Username of the database to connect to. The username is
specified in the name attribute.

<password> Password to use to connect to the database. The password
is specified in the name attribute.

<host> Host name of the database. The host name is specified in the name
attribute.

<dbms> Type of Database Management System. Currently supported are
mysql, postgres, hsqldb, h2 and file. The type of database is specified
in the name attribute.

<database> Name of the database to use. If the under the <dbms> tag
'file’ was chosen, this will refer to the full path of the file to use. The
database is specified in the name attribute.

Example 1

<persistence>
<username name="rapiduser"/>
<password name="password"/>
<host name="database.nesc.ac.uk"/>
<dbms name="mysql"/>
<database name="rapidDB"/>
</persistence>

Example 2

<persistence>

<username name="admin"/>

<password name="sa"/>

<host name=""/>

<dbms name="file"/>

<database name="/home/portal/rapidDB"/>
</persistence>

34

Chapter 4
Plugins

Using plugins, a portlet developer can add more complex logic and dynamic
user interface elements to the portlet. Plugins are written using the Jython
programming language, which is a Python implementation written in Java. All
plugin files should be placed in the 'plugins’ directory, where the portlet will be
able to find them.

Before running a plugin, it should first be declared in the ’initialise’ section,
where the name of the file and class is given. When it is declared, the plugin can
be ezecuted using the <runplugin> element, which can be part of a button press,
the preprocess or postprocess steps or when a page loads using the <onload>
element.

When the plugin has been executed, the output of a plugin can be inserted
into a page using the <plugin> element.

4.1 Structure

Plugins are classes written in Jython that inherit the 'RapidPlugin’ class. Rapid-
Plugin itself is an abstract class and requires the ’"doAction’ method to be over-
loaded. This method is called every time a new page containing the <plugin>
element is loaded.

4.1.1 Example

from uk.ac.nesc.rapid.plugin import RapidPlugin

class RapidTest(RapidPlugin):
self.addHTML(’<h1>Hello World</hi1>’)

The example above is a simple ’hello world’ plugin, which simply outputs
<h1>Hello World</h1>. The plugin should be declared in the ’initialise’ sec-
tion, executed as part of a button or other event and finally, the output should
be retrieved using the <plugin> element. Interaction between the plugin and
the portlet is done by calling methods of the RapidPlugin base class. In the
following sections all available methods of RapidPlugin are described.

e void addHTML(String html)

35

Adds a string to the output of the plugin. Multiple calls result in strings
being appended to the output. Variables using the $(variable) notation
are substituted.

void addTextInput(String variable, int rows, int cols [, int index])

This method adds a new text input box to the portlet. The name of the
variable is assumed to have been defined in the <initialise> section of
the rapid.xml file. The parameters 'rows’ and ’cols’ describe the size of
the text box and the optional parameter 'index’ can be used to set the
value of a particular sub job.

void addRadiolnput(String variable, String groupName, boolean refresh,
String option [, int index])

addRadioInput add a radio button to the portlet. The variable is assumed
to exist. ’groupName’ is a fixed string that groups radio buttons, where
only one button can be selected at one time. The ’option’ is the value the
variable will take, when selection. The optional parameter ’index’ is used
to refer to a particular value of a sub job.

void addCheckBoxInput(String variable, String checked, String unchecked)

This method adds a checkbox to the portlet. The variable indicated is
assumed to be defined, and, if selected will take the value of ’checked’ and
if unselected will take the value "unselected’

void addListInput(String variable, int size, boolean refresh, java.util.List<java.lang.String>
optionList, java.util.List<java.lang.String> displayList)

addListInput adds a list box input to the portlet. The variable is assumed
to exist. The parameter ’size’ determines the length of the list box; if the
size is set to ’1’, the list box is rendered as a drop down box. The two
lists ’optionList’ and ’displayList’ are a list of values the variable will be
set to and a corresponding list which is displayed to the user.

String getVariable(String variable [, int index [, uk.ac.ed.rapid.jobdata.JobID
jobID]])

This method gets the value of a variable. The first parameter refers to the
name of the variable, the second, optional, parameter refers to particular
subjob and the last parameter refers to a job ID if the value of a parameter
of a previously submitted job is needed.

int getVariableSize(String variable [, uk.ac.ed.rapid.jobdata.JobID jobID])

The method ’getVariableSize’ gets the number of values contained in a
variable. The optional parameter ’jobID’ can be used to query variables
of a job that has been submitted previously.

void setVariable(String variable, (java.util.List<java.lang.String> valueList
— String value)

This method sets a variable to either a list of values or to one single value.

java.util.List<uk.ac.ed.rapid.jobdata.JobID> getJobIDList()

Gets a list of jobs, ordered on the date of submission

36

e void addJobSelection(uk.ac.ed.rapid.jobdata.JobID jobID, String selectionID
[, int subJobIndex])

This method adds a radio button, that can be used to select a jobID and an

optional sub job. The selection can be retrieved using the getJobSelection(String selection)
e uk.ac.ed.rapid.jobdata.JobID getJobID(String selectionID)

Gets the Job ID for a selection.

e int getSubJobIndex(String selectionID)

Gets the sub job index for a selection

e String getJobStatus(String jobID)
Gets the status of a job.

e String getJobDate(uk.ac.ed.rapid.jobdata.JobID jobID)
Gets the date the job was submitted at.

e String getUserName()

Gets the username of the user currently logged in.

4.1.2 Jython Class path and Python path

Jython can import both Python modules and Java classes. Any jars should be
placed in the ’plugins’ directory and will be copied into the portlet WAR file
where they can be found. Python modules be accessed by changing the python
path within a plugin as follows:

import sys
sys.path.append("/home/me/mypy")

Rapid uses a very minimalist version of Jython 2.5 and does not include any
of the modules that come as standard with the Jython distribution. To access
those, download and install Jython 2.5 and append the python path as shown
above.

37

Chapter 5

Generating the portlet

In this section we describe the steps necessary to generate and install the portlet.

5.1 Dependencies

This section reviews the dependencies for the Rapid system.

5.1.1 Portal

Because Rapid generates portlets, we require a JSR 168 compliant portlet con-
tainer to deploy our portlet into. The build scripts are currently written the
GridSphere portal (version 3.0 and higher), Pluto version 1 and 2 and the Lif-
eray container. We also support the building of a 'general’ JSR 168 compliant
WAR file.

5.1.2 Apache Ant

Before installing a Rapid portlet, Apache Ant is required, which can be down-
loaded from the Apache websitd']

5.2 Rapid portlet generation and installation

In order to install a new rapid portlet, download and unpack the RapidPortlet
tarball. Within the RapidPortlet directory, all the configuration options are set
in the ’configuration’ directory.

The file ’rapid.properties’, sets properties such as the name and title of
the portlet that is to be generated. Finally, the configuration directory should
contain a file called 'rapid.xml’, which specifies the content of the new portlet,

The portlet is generated by issuing the ant command.from the RapidPortlet
directory. The default portal framework that Rapid targets is Liferay. If a
portlet for Gridsphere is required, an additional parameter gridsphere\ should
be added to the ant command. For the Pluto container add plutol or pluto2
for version 1 or 2 respectively. Use jsr168 if a minimal WAR file is required.

Thttp://www.apache.org/

38

When this process is completed, a 'portlet’ directory containing a war’ file
is generated.

The final portlet will be packaged as a 'war’ file into the ’portlet’ directory
together with a small ant install script. When deploying a GridSphere port-
let, a build.xml script is generated that can be used to deploy the portlet. It
assumes the CATALINA_HOME environment variable has been set and the port-
let is installed by entering the portlet directory and issuing the ant deploy
command. For the LifeRay portal, it is sufficient to copy the 'war’ file into the
LifeRay deployment directory.

When upgrading to a new version of Rapid, be careful to completely remove
portlets generated by previous versions of Rapid. This is because older versions
of libraries may not be removed automatically by the portal when redeploying
a new portlet.

An in-depth example of Rapid portlet installation can be found in Tutorial:
Rapid-based Portlet Installation.

39

	Introduction
	Overview
	The Rapid XML Document
	Job submission servers
	Condor cluster
	PBS
	Sun Grid Engine
	Fork

	File systems
	HTTP
	Local file system
	FTP
	SSH
	GSIFTP

	Initialising a job
	Variables
	Data types
	Data staging
	Posix
	Pre and postprocessing
	Execution node
	Plugins

	User Interface
	User interface elements
	Buttons
	Onload event
	Job monitor

	Persistence

	Plugins
	Structure
	Example
	Jython Class path and Python path

	Generating the portlet
	Dependencies
	Portal
	Apache Ant

	Rapid portlet generation and installation

